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Abstract DNA and Carbon nanotubes (CNTs) have unique physical, mechanical
and electronic properties that make them revolutionary materials for advances in tech-
nology. In state-of-the-art applications, these physical properties can be exploited
to design a type of bio-nanorobot. In this paper, we present the behavior of DNA-
based nanotweezers and show the capabilities of controlling this robotic device. The
theoretical calculations are based on the Peyrard-Bishop model for DNA dynamics.
Furthermore, the influence of the van der Waals force between two CNTs on the open-
ing and closing of nanotweezers is studied in comparison with the stretching forces
of DNA.
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1 Introduction

In the past several years, researchers have made much progress in synthesizing new
materials and developing fabrication techniques necessary for nanoscaled device pro-
duction. This progress has been particularly important for applications utilizing phys-
ical systems intended for biological and medical purposes.In this regard, biophysical
devices at the nanoscale open up novel possibilities for diagnostic and therapeutic
applications.

DNA and carbon nanotubes (CNTs) are interesting and important systems in nano-
science. They have been the subject of many investigations in the past two decades
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[1–5]. DNA is composed of two long polymer strands organized in a double helical
structure, where each strand consists of repeating units (nucleotides) [6]. CNTs are
quasi-one dimensional cylindrically wrapped graphene sheets with properties uniquely
defined by theregistry dependence of the wrapping given by a chirality index (n, m) [7].
Various applications of DNA/CNT complexes have been exploited with potential for
biosensors [8], DNA transporters [9], and field effect transistors [10]. The DNA/CNT is
a composite with complicated structure with temperature dependent motion dynamics.
Recently, using molecular dynamics simulations researchers have proposed molecular
tweezers combining DNA and CNTs [11]—a device with further technological and
scientific potential.

A theoretical model of a geometrical soliton of DNA structure was constructed for
the first time by Englander [12] (E model). In this model, one of the strands of the DNA
is represented as a chain of pendula interacting with the another fixed similar strand.
The E model explains the existence of DNA open state due to nonlinear excitations. In
addition, the DNA structure and dyanmics has been modeled in terms of the Peyrard-
Bishop (PB) model [1], which has been succssessful in explaining DNA denaturation
transitions, pre-melting dynamics, and thermal transport. In the PB model, backbone
of DNA is described as chains of particles with nearest neighboring potentials. How-
ever, the models ignore the helicoidal structure of the DNA molecule, the context of
DNA flexibility, and the properties associated with it.

CNTs are chemically inert and they interact with other materials via long-ranged
dispersive forces, such as van der Waals (vdW) forces. The vdW interactions of gra-
phitic nanostructures can be described via pairwise interatomic Lennard-Jones (LJ)
potentials [13]. This approach relies on knowledge of the coupling Hamaker constants
and it predicts the equilibrium separation correctly. The LJ potential has been applied to
model mutual interaction between various CNTs as well as CNT based devices [14,17].

In this work, we investigate the dynamics of hybrid DNA/CNT nanotweezers by
employing the PB and vdW-LJ models. The dynamics of stretching in terms of its
velocity and acceleartion due to environmental temperature changes is investigated.
The critical temperature where a melting transition of the DNA/CNT takes place is
presented. Comparisons between the strength of the involved forces showing the tem-
perature-dependent motion is dominated by the stretching of the H bonds and bases,
while the CNT vdW interaction is weaker.

The rest of the paper is organized as follows: In Sect. 2, the model, behavior and
interactions of DNA-based nanotweezer are introduced. In Sect. 3, numerical results
are presented. The conclusions are given in Sect. 4.

2 Model and mathematical background

The proposed nanotweezer architecture is assembled by attaching the reactive ends of
two single wall CNTs to the DNA strands as shown in Fig. 1. The rest of the end C
bonds are saturated via H atoms. The size of this hybrid is quite large, approximately
thousands atoms, thus full quantum mechanical atomistic treatment is not possible.
The PB model is relatively simple [1], which describes the DNA two strands as a
coupled pendulum system.
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Fig. 1 Schematics of the DNA/CNTs-based nanotweezer

2.1 Model of DNA dynamics

According to the PB model [1], the DNA double strand is represented by two par-
allel chains of nucleotides via nearest-neighbor harmonic oscillator interactions. The
potential for the Hydrogen bonds is also included. The relevant Hamiltonian is given
as follows [1,2]

H =
N∑

n=1

[
1

2
m

(
u̇2

n + v̇2
n

)
+ 1

2
k (un − un−1)

2

+1

2
k (vn − vn−1)

2 + V (un − vn)

]
, (1)

where un and vn are the nucleotide displacements from equilibrium along the direction
of the hydrogen bonds for each strand. m is the mass of each nucleotide (taken to be
the same for each unit), while k is harmonic oscillator coupling constant of the nearest-
neighbor longitudinal interaction along each strand in units of eV/Å2. The potential
for the Hydrogen bonds between the two strands is modeled via a Morse potential
V (r) = D[e−αr − 1]2. Here, D is the dissociation energy and α is a parameter. It
is important to note that the Morse potential represents the hydrogen bonds between
complementary bases, the repulsive interactions of the phosphate, and the influence
of the solvent environment.

The dynamics of the system from Eq. (1) is conveniently described using a set of
new variables xn = (un + vn)/

√
2 and yn = (un − vn)/

√
2, representing the in-phase

and out-of-phase motion of the two strands, respectively. Using this separation of
variables, the Hamiltonian is decoupled. An important point is that yn represents the
relative displacements between two nucleoid at the site n in different strands. It reflects
the stretching of DNA. Here we consider the out-of-phase displacements stretch of
the hydrogen bonds given by Hy

Hy =
N∑

n=1
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. (2)
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In the case of large number of nucleotides N → ∞, H is independent on the partic-
ular site n. Perfroming statistical averaging in the canonical ensemble, the Schrodinger
equation of a single mode y using Hy is given by [1,15,16]

(
− 1

2β2k

∂2

∂y2 + V (2y)

)
ϕ(y) = εϕ(y), (3)

where, β = 1/kB T , and kB is the Boltzmann constant. The exact solution for eige-
nenergies is given as [17]
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Equation (4) has a discrete energy spectrum when d = (β/α)
√

k D > 1/2. This
allows one to obatin a critical temperature Tc = 2

√
k D/(αkB), which is considered

as the melting temperature of DNA. The DNA states are continuous for T > Tc and
discrete for T < Tc. For the parameters of DNA, when we consider T > 200K , only
the value of n = 0 is taken into account. There is no excitation state for DNA in our
considerations.

From this, the ground state eigenfunction and eigenenergy in the thermodynamics
limit of a large system is obtained as [1,2]

ϕ0(y) =
√√
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4β2k
. (6)

In addition, the system described via Eq.(3) can be represented as a quasiparticle
with a tempereture dependent effective mass m∗ = h̄2β2k. At room temperature, the
value of the effective mass is approximately 22.87 m0, here m0 is the rest mass of
electron. The average stretching of the hydrogen bonds can also be calculated via
〈y〉 = ∫

ϕ2
0(y)ydy [1,2].

The stretching force is determined via the expression

Fs = −∂V (〈y〉)
∂ 〈y〉 . (7)

To investigate thermal properties of DNA, we heated up and cooled down the tem-
perature of the bio-systems flollowing an expression T = 1.14t + 300 (K) [11]. Here
T (K) is the environment temperature, t (ps) is time. Based on the average stretch-
ing 〈y〉 of the coupling constants pointed out above, the velocity v = d 〈y〉 /dt and
acceleration a = d2 〈y〉 /dt2 of the opening of the nanotweezers obtained by taking
the first and second derivative of the stretching with respect to time, respectively, are
presented in Fig. 2
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Fig. 2 The time-dependent velocity and acceleration of the opening

For k = 2.10−3 eV/Å2, the velocity of the opening increases and reaches its max-
imum with the value of 10.34 m/s at around t = 20 s. After that, the velocity drops
significantly to zero. Figure 2 shows that the temperature corresponding to the peak
is 322.5 K. On the other hand, initially, the value of acceleration is positive and rises
to the maximum value 0.187 × 1012 m/s2 at −5.2 s or 294 K before declining grad-
ually to the negative side, crossing the time axis at 19.4 s or 322.5 K, touching the
bottom −0.164 × 1012 m/s2 at around 45 s and continuing to approach to 0. This can
be easily explained due to the fact that below 322.5 K, the stretching velocity climbs
significantly, so the acceleration is positive. Zero acceleration, of course, is at the
relevant bending point of the opening velocity. Above 322.5 K, the unzipping velocity
declines notably, and is nearly unchanged. Therefore, the acceleration is and goes to
zero.

In the same way, for other values of k = 3.10−3 eV/Å2 and k = 4.10−3 eV/Å2, the
zero acceleration takes place at 88 s and 138 s, respectively. It means that the melting
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temperatures corresponds to 401 K for k = 3.10−3 eV/Å2 and 456 K for k = 4.10−3

eV/Å2. As a result, there is a possibility to obtain the melting temperature by observing
the velocity of stretching.

2.2 CNT van der Waals interaction

The vdW interaction between the CNT parts of the DNA nanotweezers is described
via the Lennard-Jones (LJ) approximation. This approach is widely used in calculating
disperssive interactions between graphitic nanostructures because of its relative sim-
plicity and satisfactory results in determining their equilibrium configurations [13].
The LJ potential is essentially a pairwise apprximation, and for extended systems, one
typically perfroms integration over the volumes of the interacting objects. For CNTs,
the integration is over the surfaces of hollow cylinders with radii corresponding to the
radii of the nanotubes. The LJ-vdW potential per unit length for two parallel CNTs
with radii R1 and R2 is given by [18]

VvdW = σ 2
∫ ∫ (

− A

ρ6 + B

ρ12

)
d S1d S2, (8)

where A and B are the Hamaker constants corresponding to the attractive and repul-
sive contributions, respectively. For graphitic systems, one typically takes the values
for graphite A = 15.2 eVÅ6 and B = 24 × 103 eVÅ12 [13]. σ = 4/

√
3a2 is the

mean surface density of Carbon atoms with a = 2.49Å being the lattice constant.
Also, the distance between the CNT surfaces is ρ. Perfroming the integration over the
length of the two CNTs with radii R1 and R2, the LJ-vdW interaction can be written
as [18]:

VvdW = −3π Aσ 2 R1 R2

8

2π∫

0

2π∫
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1
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+63π Bσ 2 R1 R2

256

2π∫

0

2π∫

0

1

r11 dϕ1dϕ2, (9)

where the in-plane distance between two surface elements is defined as r2 = (R − R1
cos ϕ1 + R2 cos ϕ2)

2 +(R1 sin ϕ1 − R2 sin ϕ2)
2. The definitions of R1, R2, ϕ1, ϕ2, and

r are sketched in Fig. 3.
Then, applying the first derivative with respect to R, we obtain the van der Waals

interaction force per unit length

FvdW (R) = −∂VvdW

∂ R
. (10)
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Fig. 3 Sketch of van der Waals interaction between two CNTs

Fig. 4 The van der Waals energy between two CNTs at the separation distance 15 nm as a function of
temperature

3 Numerical results and discussions

As a prototype, we take that both CNTs are identical with the chiral vector (5, 0)

and (6, 0), and lengths L1 = L2 = 5 nm. The total Hamiltonian for the system is
composed of two term, that account for the stretching and van der Waals interaction—
H = Hy + VvdW . Because of the relatively weak vdW force between the tubes, VvdW

is treated as a perturbation compared to Hy . The parameters of DNA are D = 0.33 eV
and α = 18 nm−1. It is important to note that ϕ0(y) and ε0 in the previous section
is the wave function and energy of the ground state of DNA without the presence of
CNTs.

In Figs. 4, 5, we show results for the CNT vdW perturbative force correction as a
function of tempertaure and the stretching force. Figure 5 indicates that Fs decreases
as T increases. The stretching force goes to zero at the critical temperature since the
properties of DNA change when T reaches to Tc.
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Fig. 5 The unzipping force as a function of temperature

Obviously, the wave function is temperature-dependent, so the energy and energy
shift are functions of temperature. The value of ε0 for three values of k at this range of
temperature varies from 220 to 280 meV. This means that the influence of the van der
Waals interaction on the wave function and the energy in the ground state is minor.
We can calculate separately the interactions of DNA and CNTs. An additional point is
that the larger the temperature is, the smaller the first-order pertubation of energy is. A
simple reason for this problem is that when temperature increases, two DNA strands
are opened [1] and it leads to a rapid growth of distance between two CNTs.

It is remarkable that we have studied the van der Waals interaction and the pertu-
bation energy between two parallel CNTs. This configuration also is used in order to
calculate all of the van der Waals interactions below. Nevertheless, in actual cases,
we have two crossed CNTs. The dispersion interaction in real biosystems is weaker
than that in the parallel state. Therefore, we can utilize the wave function ϕ0(y) in the
following calculations without addional terms due to the perturbation theory.

It is clearly seen in Fig. 5, at the critical temperature Tc, the stretching force vanishes
because two strands of DNA are broken for T > Tc. The opening force of DNA is
very large at low temperature. The smaller the temperature is, the smaller the distance
between two strands is. This force decreases when increasing temperature since the
separation distance increases.

These results are in aggrement with the range of magnitude force with experimen-
tal data and previous calculations [19,20]. The increase of k causes to the growth of
stretching force due to the fact that the binding of DNA rises.

Lets consider the interaction between two CNTs attached in the ends of DNA. There
are several types of DNA existing in nature such as B-DNA and Z-DNA. Since the
diameter of DNA is approximately 2.37 nm for B-DNA and 1.84 nm for Z-DNA. We
assume that the initial distance between two centers of CNTs is 1.5 nm. It is important
to note that the van der Waals force is attractive at this range of distance and the sign
of this force should be minus. The magnitude of van der Waals interaction between
two CNTs is presented in Fig. 6.
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Fig. 6 The van der Waals forces between two parallel CNTs (5,0) and (6,0) as a function of the separation
distance between two centers of CNTs

Fig. 7 The van der Waals forces between CNT (5,0) and another CNT

For k = 2.10−3 eV/Å2, if T < 277 K, the stretching force is much larger than the
van der Waals force of CNTs (5,0) and (6,0) at the initial state. Therefore, it is easy
to control the opening and closing of DNA by cooling down or heating up. At low
temperature, the contribution of the dispersion force in the movement of DNA strands
is minor. However, it can rise to significant role when T > 277 K. We can have similar
behavior with k = 3.10−3 eV/Å2 and k = 4.10−3 eV/Å2.

Figure 7 shows the forces between CNT (5.0) and different CNTs at the certain
distances. In order to control the opening and closing of nanotweezers, the van der
Waals force is weaker than the stretching forces. It is difficult to operate the movement
of nanotweezers if two CNTs have large radii.
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When we heat up the biosystem, two ends of DNA are separated by the stretch-
ing force. At the larger temperature, the unzipping force is much larger than the van
der Waals interactions, the nanotweezers are opened. The obtained results agree with
the previous simulation study [11]. Therefore, in our nanorobots, the movements of
CNTs can be controlled by changing temperature. In addition, the van der Waals
interaction between two cylinders is proportional to the length of tubes. If we want
to have the smaller van der Waals interaction, it is possible to choose the length 1 or
2 nm. Another point is that long CNTs are bent because of the van der Waals inter-
action. As a consequence, the length of tubes should not be large in designing the
bio-nanorobots.

4 Conclusions

The use of intelligence, sensing and actuation nanodevices in surgery, medical treat-
ments and materials science is a reality which has become a hot topic in the biomed-
ical industry and research in recent years. Bio-nanorobots provide further advance
not only in the nanotechnology, but also efficient approaches for disease treatment.
Our study shows the behavior and architecture of the bio-nanotweezers. The temper-
ature dependence of the opening displacements of tweezers is presented and gives
researchers some principles to understand the operation of DNA-based molecular
machines and devices. In addition, the velocity and acceleration of the opening and
closing tweezers as a function of time are speculated. The theoretical calculations
are easy understood and agree qualitatively with the previous works. Further research
on these systems can considerably extend interdisciplinary implications for future
technology.
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